SPSS Test Practice Problem 2 2 way Mixed ANOVA ANSWER KEY

PART A Assumptions

Explain why Mauchly's test of sphericity was not tested in this example.

____because the within-subjects factor had just two levels_____

To test for HOV, look at the Levene's test results:

	F value	prob	signif (y/n)	assumption holds true (y/n)
Week 1	1.35	.276	n	У
Week 15	.52	.598	n	У

PART B Inferential Statistics

Effect tested	df , df	F value	Sig value	Partial eta sq	Signif? y/n
main effect week	1, 27	19.65	<.001	.421	У
main effect of career path	2, 27	8.23	.002	.379	У
week x career path	2, 27	3.94	.032	.226	У

Write down all 3 effects using correct APA statistical notation format.

main effect of week	$F(1,27) = 19.65, p < .001, \eta_p^2 = .421$
main effect of career path	$F(2,27) = 8.23, p = .002, \eta_p^2 = .379$

week X career path	$F(2,27) = 3.94, p = .032, \eta_p^2 = .226$
--------------------	---

PART C Post hoc tests

Was a post hoc test on the between-subjects factor necessary? Explain why or why not.

Yes. The between subjects factor (career path) has three levels and it was significant. That said, we would not look at the post hoc test in this case because the interaction effect was significant. We will focus our attention there.

Was a post hoc test necessary for the within-subjects factor? Explain why or why not.

A post hoc test on the within-subjects factor (week), even though significant, was not necessary because it only has two levels.

PART D Understanding the Interaction Effect

Look at your graph to help answer the questions below. Use the "refined" overlapping nonoverlapping error bar rule you learned about to see which mean is probably different from which.

Describe the effect of week in the **clinical path** and specify the direction of the differences, if any.

By the end of week 15, attitudes toward statistics increased for the clinical path students - probably

Describe the effect of week in the **research path** and specify the direction of the differences, if any.

By the end of week 15, attitudes toward statistics increased for the research path students - probably

Describe the effect of week in the **not psych path** and specify the direction of the differences, if any.

By the end of week 15, attitudes toward statistics did not change for the not psych path students - probably

Describe the effect of career path for **week 1** and specify the direction of the differences, if any.

At week 1, attitudes toward statistics were approximately the same for all three career path groups – probably.

Describe the effect of career path for **week 15** and specify the direction of the differences, if any.

At week 15, attitudes toward statistics were equally high for the clinical and research groups and both were higher than the not psych path group - probably!

General Linear Model

Within-Subjects Factors

Measure:	MEASURE_1
	Dependent
week	Variable
1	week 1

-	
2	week_15

Between-Subjects Factors

		Value Label	N
Career	1.00	clinical	10
	2.00	research	10
	3.00	not psych	10

Descriptive Statistics

	Career	Mean	Std. Deviation	Ν
week_1	Clinical	4000	4.08792	10
	Research	1.2000	2.69979	10
	not psych	.1000	2.76687	10
	Total	.3000	3.20721	30
week_15	Clinical	5.1000	2.51440	10
	Research	6.0000	2.58199	10
	not psych	.5000	2.17307	10
	Total	3.8667	3.39100	30

Box's Test of Equality of Covariance Matrices^a

Box's M	11.863
F	1.765
df1	6
df2	18168.923
Sig.	.102

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups. a. Design: Intercept + Career

Within Subjects Design: week

Multivariate Tests^a

							Partial Eta
Effect		Value	F	Hypothesis df	Error df	Sig.	Squared
week	Pillai's Trace	.421	19.646 ^b	1.000	27.000	<.001	.421
	Wilks' Lambda	.579	19.646 ^b	1.000	27.000	<.001	.421
	Hotelling's Trace	.728	19.646 ^b	1.000	27.000	<.001	.421
	Roy's Largest Root	.728	19.646 ^b	1.000	27.000	<.001	.421
week * Career	Pillai's Trace	.226	3.935 ^b	2.000	27.000	.032	.226
	Wilks' Lambda	.774	3.935 ^b	2.000	27.000	.032	.226
	Hotelling's Trace	.291	3.935 ^b	2.000	27.000	.032	.226
	Roy's Largest Root	.291	3.935 ^b	2.000	27.000	.032	.226

a. Design: Intercept + Career

Within Subjects Design: week

b. Exact statistic

Mauchly's Test of Sphericity^a

Measure: MEASURE_1

					Epsilon ^b		
Within Subjects	Mauchly's	Approx. Chi-			Greenhouse-	Huynh-	
Effect	W	Square	df	Sig.	Geisser	Feldt	Lower-bound
week	1.000	.000	0		1.000	1.000	1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. Design: Intercept + Career

Within Subjects Design: week

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Measure: MEA	ASURE_1						
		Type III Sum		Mean			Partial Eta
Source		of Squares	df	Square	F	Sig.	Squared
week	Sphericity Assumed	190.817	1	190.817	19.646	<.001	.421
	Greenhouse-	190.817	1.000	190.817	19.646	<.001	.421
	Geisser						
	Huynh-Feldt	190.817	1.000	190.817	19.646	<.001	.421
	Lower-bound	190.817	1.000	190.817	19.646	<.001	.421
week * Career	Sphericity Assumed	76.433	2	38.217	3.935	.032	.226
	Greenhouse-	76.433	2.000	38.217	3.935	.032	.226
	Geisser						
	Huynh-Feldt	76.433	2.000	38.217	3.935	.032	.226
	Lower-bound	76.433	2.000	38.217	3.935	.032	.226
Error(week)	Sphericity Assumed	262.250	27	9.713			
	Greenhouse-	262.250	27.000	9.713			
	Geisser						
	Huynh-Feldt	262.250	27.000	9.713			
	Lower-bound	262.250	27.000	9.713			

Tests of Within-Subjects Effects

Tests of Within-Subjects Contrasts

Measure: MEASURE_1							
		Type III Sum of					Partial Eta
Source	week	Squares	df	Mean Square	F	Sig.	Squared
week	Linear	190.817	1	190.817	19.646	<.001	.421
week * Career	Linear	76.433	2	38.217	3.935	.032	.226
Error(week)	Linear	262.250	27	9.713			

Levene's Test of Equality of Error Variances ^a							
		Levene Statistic	df1	df2	Sig.		
week_1	Based on Mean	1.350	2	27	.276		
	Based on Median	1.013	2	27	.376		
	Based on Median and with adjusted df	1.013	2	21.461	.380		
	Based on trimmed mean	1.271	2	27	.297		
week_15	Based on Mean	.524	2	27	.598		

_	Based on Median	.195	2	27	.824
	Based on Median and with	.195	2	23.931	.824
	adjusted df				
	Based on trimmed mean	.541	2	27	.588

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Career

Within Subjects Design: week

Tests of Between-Subjects Effects

Measure: MEASURE_1							
Transformed Variable: Average							
	Type III Sum of					Partial Eta	
Source	Squares	df	Mean Square	F	Sig.	Squared	
Intercept	260.417	1	260.417	38.623	<.001	.589	
Career	111.033	2	55.517	8.234	.002	.379	
Error	182.050	27	6.743				

Profile Plots

Error bars: 95% Cl